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Overview

In these lectures we will discuss several applications of holomorphic
curves to symplectic topology. In particular, we will develop and
apply tools from Hamiltonian Floer theory which couples the
theory of holomorphic curves to techniques from Morse theory.
Hamiltonian dynamical systems, in particular their periodic orbits,
will play a prominent role in this story.
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Lecture 1: Floer trajectories

Starting from holomorphic spheres we introduce the notion of a
Floer trajectory. We discuss their relation to the periodic orbits of
Hamiltonian dynamical systems as well as their basic properties
(compactness, transversality, etc.)

A recurring theme in this lecture will be that Floer trajectories
generalize the notion of trajectories of (negative) gradient vector
fields of functions on manifolds.
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Hamiltonian dynamical systems

(M, ω) a symplectic manifold of dimension 2n

S1 = R/Z parameterized by t ∈ [0, 1].

H : S1 ×M → R a Hamiltonian

H is assumed to be smooth and compactly supported

(Alternative view: a smooth family of functions Ht : M → R
for t ∈ S1, where Ht(p) = H(t, p) and Ht+1 = Ht .)

XH , the time-periodic vector field determined by Hamilton’s
equation iXH

ω = −dHt .

φt
H : M → M, the time-t flow of XH (defined for all t ∈ R).
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Normal form

M = R2n with coordinates (x1, . . . , xn, y1, . . . , yn)

ω = dy1 ∧ dx1 + · · ·+ dyn ∧ dxn

XH = ∂H
∂y1

∂
∂x1

+ · · ·+ ∂H
∂yn

∂
∂xn
− ∂H

∂x1

∂
∂y1
· · · − ∂H

∂xn

∂
∂yn{

ẋj = +∂H
∂yj

(t, x1, . . . , xn, y1, . . . , yn)

ẏj = −∂H
∂xj

(t, x1, . . . , xn, y1, . . . , yn)

Observation

If H does not depend on t, then every critical point of H is a zero
of XH and hence a fixed point of φt

H for all t ∈ R.
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ẏj = −∂H
∂xj

(t, x1, . . . , xn, y1, . . . , yn)

Observation

If H does not depend on t, then every critical point of H is a zero
of XH and hence a fixed point of φt

H for all t ∈ R.



Lecture 1. Floer trajectories

Normal form

M = R2n with coordinates (x1, . . . , xn, y1, . . . , yn)

ω = dy1 ∧ dx1 + · · ·+ dyn ∧ dxn

XH = ∂H
∂y1

∂
∂x1

+ · · ·+ ∂H
∂yn

∂
∂xn
− ∂H

∂x1

∂
∂y1
· · ·



Lecture 1. Floer trajectories

Normal form

M = R2n with coordinates (x1, . . . , xn, y1, . . . , yn)

ω = dy1 ∧ dx1 + · · ·+ dyn ∧ dxn

XH = ∂H
∂y1

∂
∂x1

+ · · ·+ ∂H
∂yn

∂
∂xn
− ∂H

∂x1

∂
∂y1
· · · − ∂H

∂xn

∂
∂yn{
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Poincaré recurrence

Recall that

LXH
ω = d(iXH

ω) + iXH
(dω)

= d(−dHt)

= 0

i.e., φt
H preserves the forms ωk and hence the volume form ωn.

Theorem (Poincaré recurrence)

For almost every point p ∈ M there is a sequence of times tj ↗∞
such that

φ
tj
H(p) = p.
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Periodic orbits

Definition

A smooth map x : R→ M is a period orbit of H (or XH) with
period T if for all t ∈ R we have x(t + T ) = x(t) and

ẋ = XH(x(t)).

Definition

A T -periodic orbit x(t) of H is said to be nondegenerate if the
linear map (dφT

H )x(0) : Tx(0)M → Tx(0)M does not have one as an
eigenvalue.

Fact

A nondegenerate T -periodic orbit is isolated away from all other
T -periodic orbits.
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Example: Let f : M → R be a smooth function.

Let p be a critical point of f .

Definition

The Hessian of f at the critical point p is the bilinear map
Hesspf : TpM × TpM → R defined by

Hesspf (X ,Y ) = (Y (X (f ))(p).

(For M = R2n the Hessian is given by the matrix of second order
partial derivatives.)

Definition

A critical point p of f is said to be nodegenerate if Hesspf is
nondegenerate. If all critical points of f are nondegenerate we say
that f is a Morse function.
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Fact

Every nondegenerate critical point of f is a 1-periodic orbit of Xf

but is not necessarily nondegenerate as a 1-periodic orbit.

Fact (Yorke)

If f is sufficiently small in the C 2-norm then all of its 1-periodic
orbits are constant and hence critical points of f . If f is also Morse
then its critical points are nondegenerate as periodic orbits.
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Introducing Floer trajectories

We now want to define a Floer trajectory. As a touchstone let’s
begin with a J-holomorphic sphere, i.e., a smooth map u : S2 → M
satisfying

J ◦ du = du ◦ j ,

where j is the standard complex structure on S2 and J is a
compatible a.c.s. on (M, ω).

Removing a point in the domain of u we get a map u : C→ M
satisfying

∂u

∂x
+ J(u)

∂u

∂y
= 0,

where z = x + iy ∈ C ' S2 r {∞}.
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Removing another point we get a map u : R× S1 → M such that

∂u

∂s
+ J(u)

∂u

∂t
= 0,

where e2π(s+it) = x + iy ∈ C r {0} ' R× S1.

Definition

A Floer trajectory is a smooth map u : R× S1 → M which
satisfies the Floer equation

∂u

∂s
+ Jt(u)

(
∂u

∂t
− XH(u)

)
= 0. (1)

Here, Jt is a smooth S1-family of compatible a.c.s.’s on (M, ω)
and H is a smooth function on S1 ×M.
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Example: Let f : M → R be a smooth function.

Let Jt = J be t-independent and consider a Floer trajectory
γ : R→ M, which also does not depend on t. Then, by (1) we
have:

γ̇ − J(γ)Xf (γ) = 0.

This simplifies to
γ̇ = −∇f (γ). (2)

Here, ∇f is the gradient vector field of f with respect to the
metric gJ(·, ·) = ω(·, J·), which is defined by the equation

gJ(∇f , ·) = dH(·). (3)
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Asymptotic behavior

Define the energy of a Floer trajectory u by

E (u) =

∫
R×S1

ω(u)

(
∂u

∂s
, Jt(u)

∂u

∂s

)
ds dt.

Proposition

Suppose that all of the 1-periodic orbits of H are nondegenerate.
Then for every Floer trajectory u with E (u) <∞, the limits

u(±∞) = lim
s→±∞

u(s, t)

exist in C∞(S1,M) and are 1-periodic orbits of H.
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Example: Let f : M → R be a smooth function.

Suppose f is a Morse function and Jt = J is t-independent. Let
γ : R→ M satisfy

γ̇ = −∇f (γ).

Fact

Then we have

E (γ) =

∫
R
|γ̇(s)|2gJ

ds <∞,

and the limits γ(±∞) = lims→±∞ γ(s) exist and are critical points
of f .
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Organizing Floer trajectories

From now on we will only be interested in the set P(H) of
contractible 1-periodic orbits of H, and the Floer trajectories which
are asymptotic to elements of P(H). For x , y ∈ P(H) set

M(x , y) =

u : R× S1 → M |
u solves (1),

u(−∞) = x(t),
u(+∞) = y(t).


If all the elements of P(H) are nondegenerate, we call H a Floer
Hamiltonian. In this case all the Floer trajectories of interest lie in
one of the spaces M(x , y).
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Standing Assumptions

Unless otherwise stated, from now on we will assume that:

1 (M, ω) is compact,

2 π2(M) is trivial,

(This is a very strict assumption but includes the important
example of symplectic tori, T2n = R2n/Z2n.)

3 H is a Floer Hamiltonian.

(This is a generic property in the space C∞(S1 ×M).)

The first and third assumptions imply that P(H) is a finite set,
and hence there are finitely many spaces M(x , y).
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Implications of the second assumption.

The assumption that π2(M) is trivial implies that any holomorphic
sphere has zero symplectic area and hence zero energy. Hence,
there is no bubbling for sequences of holomorphic curves.
This assumption also allows us to associate two important
quantities to each x ∈ P(H):

The first of these is the action of x ∈ P(H) defined by

AH(x) =

∫
S1

H(t, x(t)) dt −
∫

D2

x̄∗ω,

where x̄ is a smooth map from the unit disc D2 ⊂ C to M such
that x̄(e2πit) = x(t).
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The second quantity is the Conley-Zehnder index of an orbit
x ∈ P(H). This is an integer CZ(x) which is defined in the spirit
of the Maslov class.

Nonstandard normalization: if x is a local maximum (minimum) of
a C 2-small Morse function f , then CZ(x) = 1

2 dim M (−1
2 dim M).
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Properties of M(x , y): Transversality

Let JS1 be the space of smooth S1-families of compatible a.c.s.’s
on (M, ω).

Theorem (Floer, Hofer, Salamon)

For every H there is a subset Jreg (H) ⊂ JS1 of second category
such that each for Jt ∈ Jreg (H) , the corresponding spaces
M(x , y) are smooth finite dimensional manifolds of dimension
CZ(x)− CZ(y).

Note that for x 6= y , there is a free R-action on M(x , y) by
translation; τ · u(s, t) = u(s + τ, t). Set

M̂(x , y) =M(x , y)/R.
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Remarks on the proof of transversality
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Properties of M(x , y): Compactness and Gluing

For a generic choice of Jt , the moduli (quotient) space

M̂(x , y) =M(x , y)/R is a smooth manifold of dimension
CZ(x)− CZ(y)− 1.

Definition

A k-times broken Floer trajectory from x to y is a collection of
k + 1 classes uj ∈ M̂(zj , zj+1) such that z0 = x , zk+1 = y and

CZ(x) > CZ(z1) > · · · > CZ(zk) > CZ(y).

Note that k ≤ CZ(x)− CZ(y)− 1.

Denote the set of k-times broken Floer trajectory from x to y by
∂kM(x , y).
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Compactness and Gluing continued

Theorem (Gromov, Floer)

For Jt ∈ Jreg (H), the moduli space M̂(x , y) has a natural
compactification as a smooth (CZ(x)− CZ(y)− 1)-dimensional
manifold with corners. The strata of codimension k in the
compactification is ∂kM(x , y).

Example

If CZ(x) = CZ(y) + 1 then M̂(x , y) is a compact 0-dimensional
manifold.

Example

If CZ(x) = CZ(y) + 2 then the compactification of M̂(x , y) is a
1-dimensional manifold with boundary given by

∪CZ(z)=CZ(x)−1M̂(x , z)× M̂(z , y).
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Remarks on the proof of compactness and gluing
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